
P U B L I S H I N G , W O R K G R O U P & E N T E R P R I S E T E C H N O L O G Y F O R Q U A R K U S E R S

Volume 3 • Number 2



APPLESCRIPTING QUARKXPRESS

18 X - R A Y M A G A Z I N E

Getting to Know
QuarkXPress’ AppleScript Terminology
BY BENJAMIN S. WALDIE

For both beginning and experienced scripters, implementing AppleScript automation into

a workflow frequently brings with it a learning curve. This is because every scriptable

application extends the base AppleScript language with its own set of unique terminology.

If you are attempting to script an application that you have not automated before, then you

will first need to familiarize yourself with that application’s AppleScript terminology. As you

begin to script the application, you will also become more comfortable in doing so. Before

long, scripting the application will become second nature. Automating QuarkXPress with

AppleScript is no different.

fig. 13 QuarkXPress’
AppleScript
Dictionary

Viewing QuarkXPress’ AppleScript Terminology
The first step in scripting QuarkXPress is to determine
the AppleScript terminology that QuarkXPress
understands. To do this, you will need to consult
QuarkXPress’ AppleScript dictionary. Every scriptable
application possesses an AppleScript dictionary,
which contains a complete listing of the terminology
that is specific to that application. Be aware that the
rules for displaying and navigating an application’s
AppleScript dictionary are the same regardless of
whether you are working with QuarkXPress or
another scriptable application.

To view QuarkXPress’ AppleScript dictionary, first
launch the Script Editor application, located within
the APPLICATIONSq APPLESCRIPT folder in Mac OS X.
Once launched, select FILEq OPEN DICTIONARY and,
when prompted, select QuarkXPress. The AppleScript
dictionary for QuarkXPress will then be displayed
before you in a new dictionary browser window
(see figure 1).



APPLESCRIPTING QUARKXPRESS

Understanding
the layout and
organization of
QuarkXPress’
AppleScript
dictionary is
really the first
step in the
process.

7 fig. 2 The Document Class

Navigating QuarkXPress’
AppleScript Dictionary
Since QuarkXPress’ AppleScript support is extensive,
its dictionary may appear daunting at first glance.
However, there is a method to the madness. If you look
closely, you will see that QuarkXPress’ AppleScript
terminology is actually organized into groups. These
groups are called suites, and each one represents a
set of terms that are related in some manner. For
example, the Layers Suite contains terms that relate to
manipulating layers in a document, the Tables Suite
contains terms that pertain to tables, and so forth.

Within each suite, the scripting terminology is
organized even further into two types of terms, classes
and commands. Some suites will contain both types of
terms, and some may contain only one. For example,
the Layers Suite contains both classes and commands,
while the Tables Suite contains only classes.

In AppleScript, a class represents an object, or
element, with which you may interact through
scripting. In a scriptable application such as
QuarkXPress, a document, a page, a layer, and even
the application itself, are all considered to be classes.
A command represents an action that can be taken
through scripting, and a command targets a class. For
example, the term QUIT is a command, and may be
directed toward the QuarkXPress application in order
to instruct it to quit.

More About Classes
When working with classes, there are a few
important concepts to grasp, some of which may
initially seem complex.

First, most classes possess properties. A property
is an attribute of a class that may be accessed via
AppleScript. For example, a document is a class,
and in reality a document possesses a number of
attributes, including a name, a file path, a page height,
a page width, and so on. In AppleScript, these are all
considered to be properties of a document, and may
be accessed via scripting. In QuarkXPress’ dictionary,
selecting a class will display a listing of the properties
that are accessible for that class (see figure 2). When
viewing properties, you may notice that certain
properties are followed by the text [r/o]. This
indicates that the property is a read-only property, and
may not be changed through scripting. The property
may, however, be retrieved through scripting.

Another concept regarding properties is that a
class has the ability to possess the properties of one
or more other classes. This concept, known as
inheritance, typically occurs when multiple classes
possess many of the same properties. Rather than
displaying those properties multiple times within the
dictionary, they are listed under a more generic type of
class, and then referenced by other, more specific

V O L U M E 3 • 2 19



APPLESCRIPTING QUARKXPRESS

20 X - R A Y M A G A Z I N E

3 fig. 3 The Make
Command

3 fig. 4 The Close
Command

classes. In QuarkXPress’ dictionary, the document
class indicates that it inherits the properties of a
default document class. Therefore, if you look up the
default document class, you can assume that the
properties listed there pertain to a document as well.

Classes may also contain other classes as
elements. For example, a document contains pages,
which may contain text boxes, which may contain
paragraphs, and so forth. This structure of nested
classes is known as an application’s object hierarchy.
When referring to a class within an application, you
must do so very specifically within its hierarchy, so that
the application knows exactly what you are targeting.
For example, the AppleScript code to refer to a specific
character may appear as follows:

tell application “QuarkXPress”

character 1 of paragraph 3 of text

box 1 of page 3 of document 1

end tell

In QuarkXPress’ dictionary, when selecting a
class, the elements of that class, if any, are displayed
(see figure 2).

More About Commands
Commands may seem slightly more straightforward
than classes. As mentioned before, a command
targets a class, and causes some type of action to
occur. Within QuarkXPress’ dictionary, clicking on a
command displays a definition for that command. A
command’s definition consists of a brief description
for the command, as well as a listing of any
parameters that may be used with the command
(see figure 3). A parameter is a value that will affect
the behavior of the command.

When viewing commands, there are two types of
parameters that may be present. A direct parameter is
a parameter that immediately follows a command, and
a labeled parameter is a parameter that follows a label
(see figure 4).

When initiating a command, some parameters may
be required, and some may be optional. Brackets
surrounding a parameter indicate that the parameter
is optional.

Another thing to note when working with
commands is that some commands may return a
value, once they have completed their task. The type of
result, if any, that is returned by a command, will be
displayed in the command’s definition within the
dictionary (see figure 3).

Pulling it Together
Let’s take a look at some examples of how classes and
commands are utilized when scripting. The following
example code will create a new, empty QuarkXPress
document, using QuarkXPress’ default document setup.

tell application “QuarkXPress”

make new document at beginning

end tell

In the code above, the make command is targeted
toward the QuarkXPress application, instructing it to
make a new document. In this instance, this is done
through the use of a tell statement. Rather than
including a reference to the QuarkXPress application in
the line of code containing the command, the
command is placed within a tell statement. This will
ensure that any code within the statement uses the
QuarkXPress application as its default target.

The following example code will behave in a similar
manner as the previous code. However, in addition to
creating the document, the with parameters

optional parameter is also specified, indicating the page
width and page height of the document to be created.

tell application “QuarkXPress”

make new document at beginning with

properties {page width:9, page height:12}

end tell



APPLESCRIPTING QUARKXPRESS

Now, let’s take a look at another command. The
following example code will close the front document.

tell application “QuarkXPress”

close document 1

end tell

Like the make command, the close command may
also be enhanced with the use of optional labeled
parameters. For example:

tell application “QuarkXPress”

close document 1 saving no

end tell

Extending QuarkXPress’ AppleScript Support
Depending on the XTensions you have installed, you
may notice additional terminology suites within
QuarkXPress’ AppleScript dictionary (see figure 5).
This is because software developers may choose to
implement AppleScript support within their XTensions,
thus expanding QuarkXPress’ AppleScript terminology
even further.

The following are some examples of scriptable
XTensions, which can provide you with some very
powerful options for automation. All of the XTensions
mentioned below are available from ThePowerXChange
at http://www.thepowerxchange.com

ScriptMaster XT adds a number of classes and
commands to QuarkXPress’ scripting implementation,
which can ease tasks that would otherwise require
more complex scripting to be done. Tasks that can be
easily automated with ScriptMaster XT include find and
replace, step and repeat, inserting pages, exporting
text, and more. ScriptMaster XT also provides the
ability to record AppleScript code as you perform
manual operations. This functionality can prove to be
an invaluable resource for anyone getting started with
QuarkXPress scripting, as it can help you to easily
determine the proper scripting syntax for a specific
task, when navigating the dictionary may not be
yielding the desired result.

Xcatalog enables a user to create links between
elements in a QuarkXPress document and fields in a
database or delimited file. When triggered, Xcatalog
may be used to automatically synchronize these links,
either importing data from a data source directly into a
QuarkXPress document or updating modified data in
the document back to the data source. Since Xcatalog
is scriptable, it also will allow a user to initiate its
automated process through scripting. This
functionality can enable users to create very robust
catalog-automation systems, eliminating countless
hours of manual work.

XPert Layers enables users to quickly and easily
work with and manipulate items by layer within a

QuarkXPress document. It also offers a number of
AppleScript commands for automating common layer-
related activities.

In Conclusion
Throughout this article, we have reviewed a number of
topics that should help to put you one step closer to
creating your own AppleScript-based QuarkXPress
workflows. Understanding the layout and organization
of QuarkXPress’ AppleScript dictionary is really the
first step in the process, and is essential in order to
begin scripting.

In articles to come, we will begin actually pulling
together the things that we have discussed in this
article and in the article in Volume 3, Number 1, in order
to begin creating some functional scripts that will help
to make your everyday workflows more efficient. Until
then, I encourage you to begin exploring QuarkXPress’
AppleScript terminology on your own, in order to gain a
better understanding of the classes with which you may
interact through scripting, and the commands that may
be used to inflict action on those classes.

See you in the trenches.

V O L U M E 3 • 2 21

7 fig. 5 Scriptable Plug-In
Terminology Suites


